Iterative properties of birational rowmotion
نویسندگان
چکیده
We study a birational map associated to any finite poset P . This map is a far-reaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of P . Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams promotion and Panyushev complementation are two examples of maps equivalent to it). In contrast, birational rowmotion is new and has yet to reveal several of its mysteries. In this paper, we prove that birational rowmotion has order p + q on the (p, q)-rectangle poset (i.e., on the product of a p-element chain with a q-element chain); we furthermore compute its orders on some triangle-shaped posets and on a class of posets which we call “skeletal” (this class includes all graded forests). In all cases mentioned, birational rowmotion turns out to have a finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set). Our proof in the case of the rectangle poset uses an idea introduced by Volkov (arXiv:hep-th/0606094) to prove the AA case of the Zamolodchikov periodicity conjecture; in fact, the finite order of birational rowmotion on many posets can be considered an analogue to Zamolodchikov periodicity. We comment on suspected, but so far enigmatic, connections to the theory of root posets. We also make a digression to study classical rowmotion on skeletal posets, since this case has seemingly been overlooked so far.
منابع مشابه
Iterative properties of birational rowmotion I
We study a birational map associated to any finite poset P . This map is a farreaching generalization (found by Einstein and Propp) of classical rowmotion, which is a certain permutation of the set of order ideals of P . Classical rowmotion has been studied by various authors (Fon-der-Flaass, Cameron, Brouwer, Schrijver, Striker, Williams and many more) under different guises (Striker-Williams ...
متن کاملIterative properties of birational rowmotion II
Birational rowmotion – a birational map associated to any finite poset P – has been introduced by Einstein and Propp as a far-reaching generalization of the (wellstudied) classical rowmotion map on the set of order ideals of P . Continuing our exploration of this birational rowmotion, we prove that it has order p+q on the (p, q)rectangle poset (i.e., on the product of a p-element chain with a q...
متن کاملThe order of birational rowmotion
Various authors have studied a natural operation (under various names) on the order ideals (equivalently antichains) of a finite poset, here called rowmotion. For certain posets of interest, the order of this map is much smaller than one would naively expect, and the orbits exhibit unexpected properties. In very recent work (inspired by discussions with Berenstein) Einstein and Propp describe h...
متن کاملPiecewise-linear and birational toggling
We define piecewise-linear and birational analogues of toggle-involutions, rowmotion, and promotion on order ideals of a poset P as studied by Striker and Williams. Piecewise-linear rowmotion relates to Stanley’s transfer map for order polytopes; piecewise-linear promotion relates to Schützenberger promotion for semistandard Young tableaux. When P = [a] × [b], a reciprocal symmetry property rec...
متن کاملResearch Statement Darij Grinberg
My research belongs to the field of algebraic combinatorics, centered on (but not limited to) symmetric functions and related concepts, such as combinatorial Hopf algebras, Young tableaux and trees. These objects live at the borderlands of algebra and combinatorics, often allowing for viewpoints from both sides and transfer of knowledge from one to the other. Among my contributions to this disc...
متن کامل